On the polynomial solutions of the Calogero - Sutherland - Moser model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1996 J. Phys. A: Math. Gen. 292771
(http://iopscience.iop.org/0305-4470/29/11/013)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.70
The article was downloaded on 02/06/2010 at 03:53

Please note that terms and conditions apply.

On the polynomial solutions of the
 Calogero-Sutherland-Moser model

G Iommi Amunátegui
Instituto de Física, Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile

Received 27 September 1995, in final form 4 January 1996

Abstract

The symmetry of the polynomial solutions of the Calogero-Sutherland-Moser model which corresponds to the λ-deformed symmetric group S_{N} or the general linear group $G L(N)$ is treated using the relationship between S_{N} and the unitary group $S U(N)$. A λ-deformed relation $S_{N}-S U(N)$ is studied up to $N=3$.

1. Introduction

Sogo [1] has solved exactly the eigenvalue problem for the Calogero-Sutherland-Moser $[2,3]$ (CSM) model which is an integrable one-dimensional Hamiltonian system. The homogeneous polynomial solutions of the equation
$\left[\sum_{j=1}^{N} x_{j} \frac{\partial}{\partial x_{j}}\left(x_{j} \frac{\partial}{\partial x_{j}}\right)+\lambda \sum_{j<k} \frac{x_{j}+x_{k}}{x_{j}-x_{k}}\left(x_{j} \frac{\partial}{\partial x_{j}}-x_{k} \frac{\partial}{\partial x_{k}}\right)\right] \phi=\left(\frac{L}{2 \pi}\right)^{2}\left(E-E_{0}\right) \phi$
depend of λ (in the region $0<\lambda \leqslant \frac{1}{2}$ and $1 \leqslant \lambda$) and Young diagrams play an essential role in classifying them. This fact occurs because the full symmetry of the CSM model is a λ-deformation of the symmetric group S_{N} or the general linear group $G L(N)$ (if we restrict ourselves to the unitary group the statement remains valid).

Besides, the eigenfunctions ϕ, specialized at $\lambda=1$, coincide with the Schur functions multiplied by the dimensions of the S_{N} representations. The Schur functions are the characters of the group $S U(N)$ for the corresponding Young diagrams [4]. In our opinion that is the salient aspect of Sogo's article for it clarifies the importance of S_{N} and $S U(N)$ in the context of the CSM model.

Long ago, in a pioneering piece of work, Weyl [5] considered the relationship between the unitary group $S U(N)$ (or, in general, $G L(N)$) and the symmetric group S_{N} to deal with $L S$ coupling ([5] pp 326-31 and 372-7 respectively).

Recently [6], the relationship between these groups has been treated using the induced characters of S_{N} and the general solution of $L S$ coupling for a four-electron system has been obtained.

Pursuing this line of inquiry, our purpose in this paper is to generalize, to the CSM model symmetry, the results concerning the relation $S_{N}-S U(N)$, i.e. we shall formulate a λ-deformed relation between these groups, up to $N=3$. Such a generalization gives a very specific content to the duality between S_{N} and $G L(N)$ mentioned in [1].

Finally, we must signal a slight change in notation respecting [6] in order to avoid confusion with the eigenfunctions ϕ, the induced character table of S_{N} will be denoted by F.

2. The relation between S_{N} and $S U(N)$

In this section we shall recall some results concerning S_{N} and the relation between S_{N} and the unitary group $S U(N)$ [6].

Consider a partition $(N)=\left(N_{1}, \ldots, N_{\ell}\right)$ of N where $N_{1}+N_{2}+\cdots+N_{\ell}=N$, $N_{1} \geqslant N_{2} \geqslant \cdots \geqslant N_{\ell}>0$. The Young diagrams corresponding to each partition will also be denoted by (N).

Let C be a class of S_{N} characterized by its cycle structure $\left(1^{\alpha} 2^{\beta} 3^{\gamma} \ldots\right)$. The permutations in C contain α 1-cycles, $\beta 2$-cycles etc, where $\alpha+2 \beta+3 \gamma+\cdots=N$.

Moreover, χ denotes the irreducible character table of S_{N}, F the induced character table of S_{N}, I the identity matrix and K a diagonal matrix whose elements are

$$
\left[K_{j k}\right]=\delta_{j k} \frac{|C|}{N!} \quad|C| \text { is the order of the } C \quad|C|=\frac{N!}{1^{\alpha} \alpha!2^{\beta} \beta!3^{\gamma} \gamma!\ldots}
$$

Δ is a lower triangular matrix such that Det $\Delta=1, \forall N$. All these matrices are of dimensions $p(N) \times p(N) .(p(N)$ denotes the number of partitions of N.

For S_{N}, the following equations hold:

$$
\begin{align*}
& \chi^{\mathrm{T}} \chi=K^{-1} \tag{2.1}\\
& \chi K \chi^{\mathrm{T}}=I \tag{2.2}\\
& F=\Delta \chi \tag{2.3}
\end{align*}
$$

Note that from (2.1),

$$
\begin{equation*}
\left(\chi^{\mathrm{T}} \chi\right)^{-1}=\left(K^{-1}\right)^{-1} \quad \text { or } \quad\left(\chi^{-1}\right)\left(\chi^{-1}\right)^{\mathrm{T}}=K \tag{2.4}
\end{equation*}
$$

From these expressions, some useful relations may be derived straightforwardly:
Proposition 1.

$$
\Delta^{\mathrm{T}}=\chi K F^{\mathrm{T}}
$$

Proof. From (2.3)

$$
\Delta=F \chi^{-1}
$$

and

$$
\Delta^{\mathrm{T}}=\left(\chi^{-1}\right)^{\mathrm{T}} F^{\mathrm{T}}
$$

From (2.4), we get

$$
\left(\chi^{-1}\right)^{\mathrm{T}}=\chi K
$$

therefore, the proposition follows.
Proposition 2.

$$
\Delta \Delta^{\mathrm{T}}=F K F^{\mathrm{T}}
$$

Proof. From (2.3):

$$
\chi^{-1}=F^{-1} \Delta \quad \text { and } \quad\left(\chi^{-1}\right)^{\mathrm{T}}=\Delta^{\mathrm{T}}\left(F^{\mathrm{T}}\right)^{-1}
$$

Using (2.4)

$$
\left(\chi^{-1}\right)\left(\chi^{-1}\right)^{\mathrm{T}}=F^{-1} \Delta \Delta^{\mathrm{T}}\left(F^{\mathrm{T}}\right)^{-1}=K
$$

hence

$$
F F^{-1} \Delta \Delta^{\mathrm{T}}\left(F^{\mathrm{T}}\right)^{-1}=F K
$$

or

$$
\Delta \Delta^{\mathrm{T}}\left(F^{\mathrm{T}}\right)^{-1}=F K
$$

Finally

$$
\Delta \Delta^{\mathrm{T}}=F K F^{\mathrm{T}}
$$

All these results may be verified for $N=3$; in this case we have:

$$
\begin{aligned}
& \\
&\left.\chi=\begin{array}{c}
(3) \\
(21) \\
\left(1^{3}\right)
\end{array}\right)\left(\begin{array}{ccc}
\left(1^{3}\right) & (12) & (3) \\
1 & 1 & 1 \\
2 & 0 & -1 \\
1 & -1 & 1
\end{array}\right)\left.F=\begin{array}{ccc}
(3) \\
(21) \\
\left(1^{3}\right)
\end{array}\right)\left(\begin{array}{ccc}
\left(1^{3}\right) & (12) & (3) \\
1 & 1 & 1 \\
3 & 1 & 0 \\
6 & 0 & 0
\end{array}\right) \\
& K=\left(\begin{array}{ccc}
\frac{1}{6} & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{3}
\end{array}\right) \begin{array}{ccc}
(3) & (21) & \left(1^{3}\right) \\
& \text { and } & \Delta=\binom{(21)}{\left(1^{3}\right)}\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 2 & 1
\end{array}\right) .
\end{array} .
\end{aligned}
$$

(For details see [6].)
Let us introduce the column matrix E of $\operatorname{dim} p(N) \times 1$ of the N th symmetric homogeneous polynomials $P_{(N)}$ specified by the Young diagram (N). $P_{(N)}$ is defined as

$$
\sum x_{1}^{N_{1}} x_{2}^{N_{2}} x_{3}^{N_{3}} \cdots
$$

where the sum is over all the partitions of N written in lexicographical order. Each row corresponds, respectively, to the partitions $(N),(N-1,1), \ldots(1,1, \ldots, 1)$.

For $N=3$:

$$
E=\left(\begin{array}{c}
x_{1}^{3}+x_{2}^{3}+x_{3}^{3} \\
x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{1}+x_{2}^{2} x_{3}+x_{3}^{2} x_{1}+x_{3}^{2} x_{2} \\
x_{1} x_{2} x_{3}
\end{array}\right) .
$$

Note that if instead of $G L(N)$, the unitary group $S U(N)$ is considered the variables of the symmetric functions must be complex numbers ε_{j} of unit absolute value.
$X\left(\varepsilon_{1}, \ldots, \varepsilon_{N}\right)$ are the characters of $S U(N)$ associated with the Young diagrams of the partitions of N.

We can summarize the relationship between $S U(N)$ and S_{N} by the equation

$$
\begin{equation*}
X=\chi K T \tag{2.5}
\end{equation*}
$$

where T is the column matrix of the parameters $t_{1}, t_{2}, \ldots, t_{p(N)}$. Besides

$$
\begin{equation*}
T=F^{\mathrm{T}} E \tag{2.6}
\end{equation*}
$$

From proposition 1, (2.5) and (2.6) the relation $S U(N)-S_{N}$ may be written as

$$
\begin{equation*}
X=\Delta^{\mathrm{T}} E \tag{2.7}
\end{equation*}
$$

(see [6] section IB). For $S U(3)-S_{3}$, equation (2.5) gives

$$
\begin{aligned}
& X_{\square \square}=\frac{t_{1}}{6}+\frac{t_{2}}{2}+\frac{t_{3}}{3} \\
& X_{\square}=\frac{t_{1}}{3}-\frac{t_{3}}{3} \\
& X_{\boxminus}=\frac{t_{1}}{6}-\frac{t_{2}}{2}+\frac{t_{3}}{3}
\end{aligned}
$$

(the reader may consult [5], p 375) and from equation (2.7) we get
$X_{\text {■ }}=\left(\varepsilon_{1}^{3}+\varepsilon_{2}^{3}+\varepsilon_{3}^{3}\right)+\left(\varepsilon_{1}^{2} \varepsilon_{2}+\varepsilon_{1}^{2} \varepsilon_{3}+\varepsilon_{2}^{2} \varepsilon_{1}+\varepsilon_{2}^{2} \varepsilon_{3}+\varepsilon_{3}^{2} \varepsilon_{1}+\varepsilon_{3}^{2} \varepsilon_{2}\right)+\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$
$X_{\square}=\quad\left(\varepsilon_{1}^{2} \varepsilon_{2}+\varepsilon_{1}^{2} \varepsilon_{3}+\varepsilon_{2}^{2} \varepsilon_{1}+\varepsilon_{2}^{2} \varepsilon_{3}+\varepsilon_{3}^{2} \varepsilon_{1}+\varepsilon_{3}^{2} \varepsilon_{2}\right)+2 \varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$
$X_{日}=\quad \varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$.
It must be pointed out that when the relationship between the unitary and symmetric groups is applied to $L S$ coupling only diagrams with no more than two columns are allowed by the Pauli exclusion principle [5, 6].

3. The generalization to the $\boldsymbol{\lambda}$-deformed case

3.1. The λ-deformed symmetric group

In this section use will be made of two general results derived by Sogo [1]:
(a) A λ-deformed expression of the Frobenius formula is used to evaluate the λ-deformed character tables for S_{N} [1] appendix D). Hereafter we shall denote these tables by χ_{λ}.
(b) A procedure in which the eigenfunctions are expressed as linear combinations of the fully symmetric polynomials $P_{(N)}$ ([1], section II) to construct the eigenfunctions and eigenvalues of equation (1.1). We shall focus our attention on the coefficients of $P_{(N)}$ which are the elements of a lower triangular matrix Δ_{λ}, i.e. a λ-deformed matrix equivalent to Δ (see, for instance, equation (2.3)).

From (a) and (b) we get, for $N=2$ and $N=3$, λ-deformed expressions analogous to those displayed in section 2.:

$$
\begin{align*}
& \chi_{\lambda} K_{\lambda} \chi_{\lambda}^{\mathrm{T}}=I \tag{3.1}\\
& \chi_{\lambda}^{\mathrm{T}} \chi_{\lambda}=K_{\lambda}^{-1} \tag{3.2}\\
& F_{\lambda}=\Delta_{\lambda} \chi_{\lambda} \tag{3.3}
\end{align*}
$$

(Tables 1 and 2, respectively, illustrate the equations $K_{\lambda}=\left(\chi_{\lambda}^{-1}\right)\left(\chi_{\lambda}^{-1}\right)^{\mathrm{T}}$ and $\Delta_{\lambda} \Delta_{\lambda}^{\mathrm{T}}=$ $F_{\lambda} K_{\lambda} F_{\lambda}^{\mathrm{T}}$ for $N=3$.)

Moreover, taking into account the determinants of these matrices we get

$$
\begin{align*}
& \text { Det } \chi_{\lambda}=\operatorname{Det} \chi \tag{3.4}\\
& \operatorname{Det} K_{\lambda}=\operatorname{Det} K \tag{3.5}\\
& \operatorname{Det} F_{\lambda}=\operatorname{Det} \Delta_{\lambda} \cdot \operatorname{Det} F . \tag{3.6}
\end{align*}
$$

Let us observe that
(i) through the application of (a) and (b) it is possible to obtain equations similar to (3.1)-(3.6) for $N>3$ (an algorithm to evaluate the determinants of the character tables for finite groups may be found in [7] (p 65); and
(ii) equation (3.6) exhibits, in its right-hand side, Det Δ_{λ} as a prefactor of Det F. Hence, it may be said that $\operatorname{Det} F_{\lambda}$ is not invariant under λ-deformation.

Now we are going to examine in some detail the case $N=3$. For the third degree the eigenfunctions are [1]

$$
\begin{align*}
& \phi_{(3)}=1\left\{P_{(3)}+\frac{3 \lambda}{2+\lambda} P_{(2,1)}+\frac{6 \lambda^{2}}{(2+\lambda)(1+\lambda)} P_{\left(1^{3}\right)}\right\} \\
& \phi_{(2,1)}=\frac{6}{2+\lambda}\left\{0+P_{[2,1]}+\frac{6 \lambda}{1+2 \lambda} P_{\left(1^{3}\right)}\right\} \tag{3.7}\\
& \phi_{\left(1^{3}\right)}=\frac{6}{(1+\lambda)(1+2 \lambda)}\left\{0+0+P_{\left(1^{3}\right)}\right\}
\end{align*}
$$

If $\lambda=1$, we have

$$
\begin{aligned}
& \phi_{(3)}=1\left\{P_{(3)}+P_{(2,1)}+P_{\left(1^{3}\right)}\right\} \\
& \phi_{(2,1)}=2\left\{0+P_{(2,1)}+2 P_{\left(1^{3}\right)}\right\} \\
& \phi_{\left(1^{3}\right)}=1\left\{0+0+P_{\left(1^{3}\right)}\right\}
\end{aligned}
$$

So the eigenfunction ϕ specialized at $\lambda=1$ coincides with the character of $G L(3)$-or $S U(3)$-multiplied by the degree of the irreducible representation of S_{3}. In general the prefactor of the λ-deformed character of $G L(N)$-or of $S U(N)$-is the λ-deformed degree of the S_{N} representations.

If we leave aside the prefactors, the right-hand side of equation (3.7) may be written as $\Delta^{\mathrm{T}} E$ (see equation (2.7)). Hence for the third degree, the λ-deformed Δ matrix is

$$
\Delta_{\lambda}=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{3.8}\\
\frac{3 \lambda}{2+\lambda} & 1 & 0 \\
\frac{6 \lambda^{2}}{(1+\lambda)(2+\lambda)} & \frac{6 \lambda}{1+2 \lambda} & \frac{6}{(1+\lambda)(1+2 \lambda)}
\end{array}\right) .
$$

For the third degree, this character table is [1]:
$\left(1^{3}\right)$
$(2,1)$
(3)
(3)
$\chi_{\lambda}=$

$\left(1^{3}\right)$	$(2,1)$	(3)
$\frac{1}{6}$	$\frac{2-2 \lambda}{2+\lambda}$	$\frac{-3 \lambda}{2+\lambda}$
$\frac{6}{(1+\lambda)(1+2 \lambda)}$	$\frac{-6 \lambda}{(1+\lambda)(1+2 \lambda)}$	$\frac{1}{(1+\lambda)(1+2 \lambda)}$

Equation (3.3) allows us to evaluate the λ-deformed induced characters table, i.e., $F_{\lambda}=$ $\Delta_{\lambda} \chi_{\lambda}$,
$F_{\lambda}=\left(\begin{array}{ccc}1 & 1 & 1 \\ 3 & 1 & 0 \\ \frac{6\left(4 \lambda^{4}+12 \lambda^{3}+11 \lambda^{2}+3 \lambda+6\right)}{(1+\lambda)^{2}(1+2 \lambda)^{2}} & \frac{6 \lambda\left(2 \lambda^{2}+3 \lambda-5\right)}{(1+\lambda)^{2}(1+2 \lambda)^{2}} & \frac{-6 \lambda^{2}\left(2 \lambda^{2}+3 \lambda-5\right)}{(1+\lambda)^{2}(1+2 \lambda)^{2}}\end{array}\right)$

3.2. The λ-deformed relation $S_{N}-S U(N)$

To formulate the λ-deformed relationship between $S U(N)$ and S_{N}, it suffices to write equation (2.5) employing λ-deformed terms, i.e.

$$
\begin{equation*}
X_{\lambda}=\chi_{\lambda} K_{\lambda} T \tag{3.10}
\end{equation*}
$$

For $N=3$, equation (3.9) and table 1 yield:

$$
\begin{aligned}
& X_{\square}=\frac{\lambda^{2} t_{1}+3 \lambda t_{2}+2 t_{3}}{(\lambda+1)(\lambda+2)} \\
& X_{\oplus}=\frac{\lambda t_{1}+(1-\lambda) t_{2}-t_{3}}{2 \lambda+1} \\
& X_{\boxminus}=\frac{t_{1}}{6}-\frac{t_{2}}{2}+\frac{t_{3}}{3}
\end{aligned}
$$

(in the appendix, the case $N=2$ is considered).
For the time being, we ignore whether such a λ-deformed relation offers some new insight into the CSM model. Further studies are expected.

3.3. The relation between χ_{λ} and F_{λ}

The table χ of irreducible characters of S_{N} may be derived from the table F of induced characters [6]. In order to carry out this derivation, each row F_{i} of F must be considered as a vector which ought to be orthonormalized using the Gram-Schmidt method. In such a way the rows χ_{i} of χ are obtained. It has been shown that

$$
\begin{equation*}
\chi_{i}=F_{i}-\sum_{k=1}^{i-1}\left(F_{i} K \chi_{k}\right) \chi_{k} \quad \text { for } i=1, \chi_{1}=F_{1} \tag{3.11}
\end{equation*}
$$

where χ_{i} and F_{i} are the i th rows of χ and F respectively. K is the diagonal matrix defined in section 2. Expression (3.11) may be written as

$$
F_{i}=\chi_{i}+\sum_{k=1}^{i-1}\left(F_{i} K \chi_{k}\right) \chi_{k}
$$

Note that the coefficients of χ_{k} are the elements of the lower triangular matrix Δ appearing in equation (2.3). Besides, Det $\Delta=1, \forall N$.

We may extend this procedure to the λ-deformed case in a direct manner. However, a crucial feature of the Gram-Schmidt procedure, i.e. Det $\Delta=1$, does not hold if $\lambda \neq 1$: in general Det $\Delta_{\lambda} \neq 1$. Hence, this fact will modify the result.

For the λ-deformed case, expression (3.11) can be written as

$$
\begin{equation*}
\chi_{\lambda_{i}}=F_{\lambda_{i}}-\sum_{k=1}^{i-1}\left(F_{\lambda_{i}} K_{\lambda} \chi_{\lambda_{k}}\right) \chi_{\lambda_{k}} . \tag{3.12}
\end{equation*}
$$

As before, let us consider, as an illustration, $N=3$. Our starting point is (3.12) and use must be made of K_{λ} (table 1). In principle we must expect, as a result, equation (3.9) with modifications due to the property: Det $\Delta_{\lambda} \neq 1$.

We have:

$$
\begin{align*}
& \chi_{\lambda_{1}}=F_{\lambda_{1}}=\left(\begin{array}{ll}
1 & 1
\end{array} 1\right) \tag{3.13a}\\
& \chi_{\lambda_{2}}=F_{\lambda_{2}}-\left(F_{\lambda_{2}} K_{\lambda} \chi_{\lambda_{1}}\right) \chi_{\lambda_{1}} \quad \text { or } \quad \chi_{\lambda_{2}}=\left(\frac{6}{\lambda+2} \frac{2(1-\lambda)}{\lambda+2} \frac{-3 \lambda}{\lambda+2}\right) \tag{3.13b}\\
& \chi_{\lambda_{3}}=F_{\lambda_{3}}-\left(F_{\lambda_{3}} K_{\lambda} \chi_{\lambda_{1}}\right) \chi_{\lambda_{1}}-\left(F_{\lambda_{3}} K_{\lambda} \chi_{\lambda_{2}}\right) \chi_{\lambda_{2}} \tag{3.13c}
\end{align*}
$$

that is

$$
\chi_{\lambda_{3}}=\left(\frac{36}{(\lambda+1)^{2}(2 \lambda+1)^{2}} \frac{-36 \lambda}{(\lambda+1)^{2}(2 \lambda+1)^{2}} \frac{36 \lambda^{2}}{(\lambda+1)^{2}(2 \lambda+1)^{2}}\right)
$$

i.e.
$\chi_{\lambda_{3}}=\frac{6}{(\lambda+1)(2 \lambda+1)}\left(\frac{6}{(\lambda+1)(2 \lambda+1)} \frac{-6 \lambda}{(\lambda+1)(2 \lambda+1)} \frac{6 \lambda^{2}}{(\lambda+1)(2 \lambda+1)}\right)$.
From equation (3.8), we get

$$
\operatorname{det} \Delta_{\lambda}=\frac{6}{(1+\lambda)(1+2 \lambda)}
$$

hence (3.13c) is nothing other than Det $\Delta_{\lambda} \cdot \chi_{\lambda_{3}}$. So, for $N=3$, the first two rows of χ_{λ} obtained via the Gram-Schmidt method from F_{λ} correspond exactly with the first two rows of χ_{λ}. But the third, and last one, has, as a prefactor, the determinant of Δ_{λ} (see equation (3.6)).

Note. (Remark that if we do not play the game fairly, i.e. if instead of (3.8), we consider

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 2 & 1
\end{array}\right)
$$

throughout the calculations, χ_{λ} is derived from F_{λ} via the Gram-Schmidt method. This is a kind of a contrario verification of the assertions made so far about this point.)

Acknowledgments

The author is indebted to Pablo Velasquez for checking the results of section 3 as well as tables 1 and 2.

Appendix. λ-deformed $S_{2}-S U(2)$ relationship

For λ-deformed S_{2}, we have
$\chi_{\lambda}=\left(\begin{array}{cc}1 & 1 \\ \frac{2}{1+\lambda} & \frac{-2 \lambda}{1+\lambda}\end{array}\right) \quad$ and $\quad K_{\lambda}=\left(\begin{array}{cc}\frac{5 \lambda^{2}+2 \lambda+1}{4(\lambda+1)^{2}} & \frac{2 \lambda-\lambda^{2}-1}{4(\lambda+1)^{2}} \\ \frac{2 \lambda-\lambda^{2}-1}{4(\lambda+1)^{2}} & \frac{5+2 \lambda+\lambda^{2}}{4(\lambda+1)^{2}}\end{array}\right)$
hence

$$
X_{\lambda}=\chi_{\lambda} K_{\lambda} T=\left(\begin{array}{cc}
\frac{\lambda}{\lambda+1} & \frac{1}{\lambda+1} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right)\binom{t_{1}}{t_{2}}
$$

i.e.

$$
X_{\square}=\frac{\lambda}{\lambda+1} t_{1}+\frac{1}{\lambda+1} t_{2} \quad X_{\boxminus}=\frac{1}{2} t_{1}-\frac{1}{2} t_{2}
$$

for $\lambda=1$, the usual result is reproduced.

References

[1] Sogo K 1994 J. Math. Phys. 352282
[2] Sutherland B 1971 J. Math. Phys. 12246
[3] Sutherland B 1971 Phys. Rev. A 42019
[4] Weyl H 1946 The Classical Groups-Their Invariants and Representations (Princeton, NJ: Princeton University) ch VII
[5] Weyl H 1950 The Theory of Groups and Quantum Mechanics translated from the German by H P Robertson (New York: Dover)
[6] Iommi Amunátegui G 1995 J. Math. Phys. 365246
[7] Lomont J S 1993 Applications of Finite Groups (New York: Dover)

Table 1. The λ-deformed K-matrix (third degree) (the ordinary result is reproduced if $\lambda=1$).

$$
K_{\lambda}=\left(\begin{array}{cccc}
\frac{23}{18}-\frac{100 \lambda^{5}+329 \lambda^{4}+482 \lambda^{3}+369 \lambda^{2}+140 \lambda+20}{4(\lambda+1)^{2}(\lambda+2)^{2}(2 \lambda+1)^{2}} & \frac{56 \lambda^{5}+97 \lambda^{4}+122 \lambda^{3}+109 \lambda^{2}+44 \lambda+4}{4(\lambda+1)^{2}(\lambda+2)^{2}(2 \lambda+1)^{2}}-\frac{1}{3} & \frac{1}{18}-\frac{\lambda\left(\lambda^{4}-2 \lambda^{3}+5 \lambda^{2}+10 \lambda+4\right)}{(\lambda+1)^{2}(\lambda+2)^{2}(2 \lambda+1)^{2}} \\
\frac{56 \lambda^{5}+97 \lambda^{4}+122 \lambda^{3}+109 \lambda^{2}+44 \lambda+4}{4(\lambda+1)^{2}(\lambda+2)^{2}(2 \lambda+1)^{2}}-\frac{1}{3} & \frac{1}{2}-\frac{3\left(4 \lambda^{5}-25 \lambda^{4}-2 \lambda^{3}+23 \lambda^{2}+4 \lambda-4\right)}{4(\lambda+1)^{2}(\lambda+2)^{2}(2 \lambda+1)^{2}} & \frac{\lambda^{5}+5 \lambda^{4}+31 \lambda^{3}+23 \lambda^{2}-2 \lambda-4}{(\lambda+1)^{2}(\lambda+2)^{2}(2 \lambda+1)^{2}}-\frac{1}{6} \\
\frac{1}{18}-\frac{\lambda\left(\lambda^{4}-2 \lambda^{3}+5 \lambda^{2}+10 \lambda+4\right)}{(\lambda+1)^{2}(\lambda+2)^{2}(2 \lambda+1)^{2}} & \frac{\lambda^{5}+5 \lambda^{4}+31 \lambda^{3}+23 \lambda^{2}-2 \lambda-4}{(\lambda+1)^{2}(\lambda+2)^{2}(2 \lambda+1)^{2}}-\frac{1}{6} & \frac{\lambda^{4}+6 \lambda^{3}+29 \lambda^{2}+28 \lambda+8}{(\lambda+1)^{2}(\lambda+2)^{2}(2 \lambda+1)^{2}}+\frac{1}{9}
\end{array}\right)
$$

Table 2. λ-deformed proposition 2: $\Delta \Delta^{\mathrm{T}}=F K F^{\mathrm{T}}$ (third degree) (the ordinary result is reproduced if $\lambda=1$).
$\Delta_{\lambda} \Delta_{\lambda}^{\mathrm{T}}=F_{\lambda} K_{\lambda} F_{\lambda}^{\mathrm{T}}=\left(\begin{array}{ccc}1 & \frac{3 \lambda}{\lambda+2} & \frac{6 \lambda^{2}}{(\lambda+1)(\lambda+2)} \\ \frac{3 \lambda}{\lambda+2} & 10-\frac{36(\lambda+1)}{(\lambda+2)^{2}} & \frac{6 \lambda\left(7 \lambda^{3}+8 \lambda^{2}+8 \lambda+4\right)}{(\lambda+1)(\lambda+2)^{2}(2 \lambda+1)} \\ \frac{6 \lambda^{2}}{(\lambda+1)(\lambda+2)} & \frac{6 \lambda\left(7 \lambda^{3}+8 \lambda^{2}+8 \lambda+4\right)}{(\lambda+1)(\lambda+2)^{2}(2 \lambda+1)} & \left.\frac{36\left(5 \lambda^{6}+10 \lambda^{5}+14 \lambda^{4}+12 \lambda^{3}+5 \lambda^{2}+4 \lambda+4\right)}{(\lambda+1)^{2}(\lambda+2)^{2}(2 \lambda+1)^{2}}\right)\end{array}\right)$.

