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Abstract. The symmetry of the polynomial solutions of the Calogero–Sutherland–Moser model
which corresponds to theλ-deformed symmetric groupSN or the general linear groupGL(N) is
treated using the relationship betweenSN and the unitary groupSU(N). A λ-deformed relation
SN –SU(N) is studied up toN = 3.

1. Introduction

Sogo [1] has solved exactly the eigenvalue problem for the Calogero–Sutherland–Moser
[2, 3] (CSM) model which is an integrable one-dimensional Hamiltonian system. The
homogeneous polynomial solutions of the equation[ N∑

j=1

xj

∂

∂xj

(
xj

∂

∂xj

)
+ λ

∑
j<k

xj + xk

xj − xk

(
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∂
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) ]
φ =

(
L

2π

)2

(E − E0)φ (1.1)

depend ofλ (in the region 0< λ 6 1
2 and 16 λ) and Young diagrams play an essential

role in classifying them. This fact occurs because the full symmetry of the CSM model is a
λ-deformation of the symmetric groupSN or the general linear groupGL(N) (if we restrict
ourselves to the unitary group the statement remains valid).

Besides, the eigenfunctionsφ, specialized atλ = 1, coincide with the Schur functions
multiplied by the dimensions of theSN representations. The Schur functions are the
characters of the groupSU(N) for the corresponding Young diagrams [4]. In our opinion
that is the salient aspect of Sogo’s article for it clarifies the importance ofSN andSU(N)

in the context of the CSM model.
Long ago, in a pioneering piece of work, Weyl [5] considered the relationship between

the unitary groupSU(N) (or, in general,GL(N)) and the symmetric groupSN to deal with
LS coupling ([5] pp 326–31 and 372–7 respectively).

Recently [6], the relationship between these groups has been treated using the induced
characters ofSN and the general solution ofLS coupling for a four-electron system has
been obtained.

Pursuing this line of inquiry, our purpose in this paper is to generalize, to the CSM
model symmetry, the results concerning the relationSN–SU(N), i.e. we shall formulate a
λ-deformed relation between these groups, up toN = 3. Such a generalization gives a very
specific content to the duality betweenSN andGL(N) mentioned in [1].

Finally, we must signal a slight change in notation respecting [6] in order to avoid
confusion with the eigenfunctionsφ, the induced character table ofSN will be denoted by
F .
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2. The relation betweenSN and SU (N )

In this section we shall recall some results concerningSN and the relation betweenSN and
the unitary groupSU(N) [6].

Consider a partition(N) = (N1, . . . , N`) of N where N1 + N2 + · · · + N` = N ,
N1 > N2 > · · · > N` > 0. The Young diagrams corresponding to each partition will also
be denoted by(N).

Let C be a class ofSN characterized by its cycle structure(1α2β3γ . . .). The
permutations inC containα 1-cycles,β 2-cycles etc, whereα + 2β + 3γ + · · · = N .

Moreover,χ denotes the irreducible character table ofSN , F the induced character table
of SN , I the identity matrix andK a diagonal matrix whose elements are

[Kjk] = δjk

|C|
N !

|C|is the order of theC |C| = N !

1αα!2ββ!3γ γ ! . . .

1 is a lower triangular matrix such that Det1 = 1, ∀N . All these matrices are of dimensions
p(N) × p(N). (p(N) denotes the number of partitions ofN .)

For SN , the following equations hold:

χTχ = K−1 (2.1)

χKχT = I (2.2)

F = 1χ. (2.3)

Note that from (2.1),

(χTχ)−1 = (K−1)−1 or (χ−1)(χ−1)T = K. (2.4)

From these expressions, some useful relations may be derived straightforwardly:

Proposition 1.

1T = χKF T.

Proof. From (2.3)

1 = Fχ−1

and

1T = (χ−1)TF T.

From (2.4), we get

(χ−1)T = χK

therefore, the proposition follows.

Proposition 2.

11T = FKF T.

Proof. From (2.3):

χ−1 = F−11 and (χ−1)T = 1T(F T)−1.

Using (2.4)

(χ−1)(χ−1)T = F−111T(F T)−1 = K

hence

FF−111T(F T)−1 = FK
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or

11T(F T)−1 = FK.

Finally

11T = FKF T.

All these results may be verified forN = 3; in this case we have:

χ =


(13) (12) (3)

(3) 1 1 1
(21) 2 0 −1
(13) 1 −1 1

 F =


(13) (12) (3)

(3) 1 1 1
(21) 3 1 0
(13) 6 0 0



K =
 1

6 0 0
0 1

2 0
0 0 1

3

 and 1 =


(3) (21) (13)

(3) 1 0 0
(21) 1 1 0
(13) 1 2 1

.

(For details see [6].)
Let us introduce the column matrixE of dim p(N) × 1 of the N th symmetric

homogeneous polynomialsP(N) specified by the Young diagram(N). P(N) is defined as∑
x

N1
1 x

N2
2 x

N3
3 . . .

where the sum is over all the partitions ofN written in lexicographical order. Each row
corresponds, respectively, to the partitions(N), (N − 1, 1), . . . (1, 1, . . . , 1).

For N = 3:

E =
( x3

1 + x3
2 + x3

3
x2

1x2 + x2
1x3 + x2

2x1 + x2
2x3 + x2

3x1 + x2
3x2

x1x2x3

)
.

Note that if instead ofGL(N), the unitary groupSU(N) is considered the variables of the
symmetric functions must be complex numbersεj of unit absolute value.

X(ε1, . . . , εN) are the characters ofSU(N) associated with the Young diagrams of the
partitions ofN .

We can summarize the relationship betweenSU(N) andSN by the equation

X = χKT (2.5)

whereT is the column matrix of the parameterst1, t2, . . . , tp(N). Besides

T = F TE (2.6)

From proposition 1, (2.5) and (2.6) the relationSU(N)–SN may be written as

X = 1TE (2.7)

(see [6] section IB). ForSU(3)–S3, equation (2.5) gives

X��� = t1

6
+ t2

2
+ t3

3

X���
= t1

3
− t3

3

X���
= t1

6
− t2

2
+ t3

3
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(the reader may consult [5], p 375) and from equation (2.7) we get

X��� = (ε3
1 + ε3

2 + ε3
3) + (ε2

1ε2 + ε2
1ε3 + ε2

2ε1 + ε2
2ε3 + ε2

3ε1 + ε2
3ε2) + ε1ε2ε3

X���
= (ε2

1ε2 + ε2
1ε3 + ε2

2ε1 + ε2
2ε3 + ε2

3ε1 + ε2
3ε2) + 2ε1ε2ε3

X���
= ε1ε2ε3.

It must be pointed out that when the relationship between the unitary and symmetric groups
is applied toLS coupling only diagrams with no more than two columns are allowed by
the Pauli exclusion principle [5, 6].

3. The generalization to theλ-deformed case

3.1. Theλ-deformed symmetric group

In this section use will be made of two general results derived by Sogo [1]:
(a) A λ-deformed expression of the Frobenius formula is used to evaluate theλ-deformed

character tables forSN [1] appendix D). Hereafter we shall denote these tables byχλ.
(b) A procedure in which the eigenfunctions are expressed as linear combinations of

the fully symmetric polynomialsP(N) ([1], section II) to construct the eigenfunctions and
eigenvalues of equation (1.1). We shall focus our attention on the coefficients ofP(N) which
are the elements of a lower triangular matrix1λ, i.e. aλ-deformed matrix equivalent to1
(see, for instance, equation (2.3)).

From (a) and (b) we get, forN = 2 andN = 3, λ-deformed expressions analogous to
those displayed in section 2.:

χλKλχ
T
λ = I (3.1)

χT
λ χλ = K−1

λ (3.2)

Fλ = 1λχλ (3.3)

(Tables 1 and 2, respectively, illustrate the equationsKλ = (χ−1
λ )(χ−1

λ )T and 1λ1
T
λ =

FλKλF
T
λ for N = 3.)

Moreover, taking into account the determinants of these matrices we get

Detχλ = Detχ (3.4)

DetKλ = DetK (3.5)

DetFλ = Det1λ · DetF. (3.6)

Let us observe that
(i) through the application of (a) and (b) it is possible to obtain equations similar to

(3.1)–(3.6) forN > 3 (an algorithm to evaluate the determinants of the character tables for
finite groups may be found in [7] (p 65); and

(ii) equation (3.6) exhibits, in its right-hand side, Det1λ as a prefactor of DetF . Hence,
it may be said that DetFλ is not invariant underλ-deformation.

Now we are going to examine in some detail the caseN = 3. For the third degree the
eigenfunctions are [1]

φ(3) = 1

{
P(3) + 3λ

2 + λ
P(2,1) + 6λ2

(2 + λ)(1 + λ)
P(13)

}
φ(2,1) = 6

2 + λ

{
0 + P[2,1] + 6λ

1 + 2λ
P(13)

}
φ(13) = 6

(1 + λ)(1 + 2λ)
{0 + 0 + P(13)}

(3.7)
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If λ = 1, we have

φ(3) = 1{P(3) + P(2,1) + P(13)}
φ(2,1) = 2{0 + P(2,1) + 2P(13)}
φ(13) = 1{0 + 0 + P(13)}.

So the eigenfunctionφ specialized atλ = 1 coincides with the character ofGL(3)—or
SU(3)—multiplied by the degree of the irreducible representation ofS3. In general the
prefactor of theλ-deformed character ofGL(N)—or of SU(N)—is theλ-deformed degree
of the SN representations.

If we leave aside the prefactors, the right-hand side of equation (3.7) may be written as
1TE (see equation (2.7)). Hence for the third degree, theλ-deformed1 matrix is

1λ =
 1 0 0

3λ
2+λ

1 0
6λ2

(1+λ)(2+λ)
6λ

1+2λ
6

(1+λ)(1+2λ)

 . (3.8)

For the third degree, this character table is [1]:

(13) (2, 1) (3)

(3)

χλ = (2, 1)

(13)

1 1 1
6

2 + λ

2 − 2λ

2 + λ

−3λ

2 + λ
6

(1 + λ)(1 + 2λ)

−6λ

(1 + λ)(1 + 2λ)

6λ2

(1 + λ)(1 + 2λ)

(3.9)

Equation (3.3) allows us to evaluate theλ-deformed induced characters table, i.e.,Fλ =
1λχλ,

Fλ =


1 1 1
3 1 0

6(4λ4 + 12λ3 + 11λ2 + 3λ + 6)

(1 + λ)2(1 + 2λ)2

6λ(2λ2 + 3λ − 5)

(1 + λ)2(1 + 2λ)2

−6λ2(2λ2 + 3λ − 5)

(1 + λ)2(1 + 2λ)2


3.2. Theλ-deformed relationSN–SU(N)

To formulate theλ-deformed relationship betweenSU(N) and SN , it suffices to write
equation (2.5) employingλ-deformed terms, i.e.

Xλ = χλKλT . (3.10)

For N = 3, equation (3.9) and table 1 yield:

X��� = λ2t1 + 3λt2 + 2t3

(λ + 1)(λ + 2)

X���
= λt1 + (1 − λ)t2 − t3

2λ + 1

X���
= t1

6
− t2

2
+ t3

3

(in the appendix, the caseN = 2 is considered).
For the time being, we ignore whether such aλ-deformed relation offers some new

insight into the CSM model. Further studies are expected.
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3.3. The relation betweenχλ andFλ

The tableχ of irreducible characters ofSN may be derived from the tableF of induced
characters [6]. In order to carry out this derivation, each rowFi of F must be considered
as a vector which ought to be orthonormalized using the Gram–Schmidt method. In such a
way the rowsχi of χ are obtained. It has been shown that

χi = Fi −
i−1∑
k=1

(FiKχk)χk for i = 1, χ1 = F1 (3.11)

whereχi andFi are theith rows ofχ andF respectively.K is the diagonal matrix defined
in section 2. Expression (3.11) may be written as

Fi = χi +
i−1∑
k=1

(FiKχk)χk.

Note that the coefficients ofχk are the elements of the lower triangular matrix1 appearing
in equation (2.3). Besides, Det1 = 1, ∀N .

We may extend this procedure to theλ-deformed case in a direct manner. However, a
crucial feature of the Gram–Schmidt procedure, i.e. Det1 = 1, does not hold ifλ 6= 1: in
general Det1λ 6= 1. Hence, this fact will modify the result.

For theλ-deformed case, expression (3.11) can be written as

χλi
= Fλi

−
i−1∑
k=1

(Fλi
Kλχλk

)χλk
. (3.12)

As before, let us consider, as an illustration,N = 3. Our starting point is (3.12) and use
must be made ofKλ (table 1). In principle we must expect, as a result, equation (3.9) with
modifications due to the property: Det1λ 6= 1.

We have:

χλ1 = Fλ1 = (1 1 1) (3.13a)

χλ2 = Fλ2 − (Fλ2Kλχλ1)χλ1 or χλ2 =
(

6

λ + 2

2(1 − λ)

λ + 2

−3λ

λ + 2

)
(3.13b)

χλ3 = Fλ3 − (Fλ3Kλχλ1)χλ1 − (Fλ3Kλχλ2)χλ2 (3.13c)

that is

χλ3 =
(

36

(λ + 1)2(2λ + 1)2

−36λ

(λ + 1)2(2λ + 1)2

36λ2

(λ + 1)2(2λ + 1)2

)
i.e.

χλ3 = 6

(λ + 1)(2λ + 1)

(
6

(λ + 1)(2λ + 1)

−6λ

(λ + 1)(2λ + 1)

6λ2

(λ + 1)(2λ + 1)

)
.

From equation (3.8), we get

det1λ = 6

(1 + λ)(1 + 2λ)

hence (3.13c) is nothing other than Det1λ · χλ3. So, for N = 3, the first two rows of
χλ obtained via the Gram–Schmidt method fromFλ correspond exactly with the first two
rows of χλ. But the third, and last one, has, as a prefactor, the determinant of1λ (see
equation (3.6)).
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Note. (Remark that if we do not play the game fairly, i.e. if instead of (3.8), we consider( 1 0 0
1 1 0
1 2 1

)
throughout the calculations,χλ is derived fromFλ via the Gram–Schmidt method. This is
a kind of a contrario verification of the assertions made so far about this point.)
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Appendix. λ-deformed S2–SU (2) relationship

For λ-deformedS2, we have

χλ =
( 1 1

2

1 + λ

−2λ

1 + λ

)
and Kλ =


5λ2 + 2λ + 1

4(λ + 1)2

2λ − λ2 − 1

4(λ + 1)2

2λ − λ2 − 1

4(λ + 1)2

5 + 2λ + λ2

4(λ + 1)2


hence

Xλ = χλKλT =
 λ

λ + 1

1

λ + 1
1
2 − 1

2

 (
t1
t2

)
i.e.

X�� = λ

λ + 1
t1 + 1

λ + 1
t2 X��

= 1
2t1 − 1

2t2

for λ = 1, the usual result is reproduced.
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Table 1. The λ-deformedK-matrix (third degree) (the ordinary result is reproduced ifλ = 1).

Kλ =



23

18
− 100λ5 + 329λ4 + 482λ3 + 369λ2 + 140λ + 20

4(λ + 1)2(λ + 2)2(2λ + 1)2

56λ5 + 97λ4 + 122λ3 + 109λ2 + 44λ + 4

4(λ + 1)2(λ + 2)2(2λ + 1)2
− 1

3

1

18
− λ(λ4 − 2λ3 + 5λ2 + 10λ + 4)

(λ + 1)2(λ + 2)2(2λ + 1)2

56λ5 + 97λ4 + 122λ3 + 109λ2 + 44λ + 4

4(λ + 1)2(λ + 2)2(2λ + 1)2
− 1

3

1

2
− 3(4λ5 − 25λ4 − 2λ3 + 23λ2 + 4λ − 4)

4(λ + 1)2(λ + 2)2(2λ + 1)2

λ5 + 5λ4 + 31λ3 + 23λ2 − 2λ − 4

(λ + 1)2(λ + 2)2(2λ + 1)2
− 1

6

1

18
− λ(λ4 − 2λ3 + 5λ2 + 10λ + 4)

(λ + 1)2(λ + 2)2(2λ + 1)2

λ5 + 5λ4 + 31λ3 + 23λ2 − 2λ − 4

(λ + 1)2(λ + 2)2(2λ + 1)2
− 1

6

λ4 + 6λ3 + 29λ2 + 28λ + 8

(λ + 1)2(λ + 2)2(2λ + 1)2
+ 1

9



Table 2. λ-deformed proposition 2:11T = FKF T (third degree) (the ordinary result is
reproduced ifλ = 1).

1λ1
T
λ = FλKλF

T
λ =



1
3λ

λ + 2

6λ2

(λ + 1)(λ + 2)

3λ

λ + 2
10− 36(λ + 1)

(λ + 2)2

6λ(7λ3 + 8λ2 + 8λ + 4)

(λ + 1)(λ + 2)2(2λ + 1)

6λ2

(λ + 1)(λ + 2)

6λ(7λ3 + 8λ2 + 8λ + 4)

(λ + 1)(λ + 2)2(2λ + 1)

36(5λ6 + 10λ5 + 14λ4 + 12λ3 + 5λ2 + 4λ + 4)

(λ + 1)2(λ + 2)2(2λ + 1)2


.


